Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Physica A ; 606: 128144, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2008033

ABSTRACT

Since 2012, the Middle East has seen a steady rise in the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A fractional derivative of the non-singular Mittag-Leffler type is used in this research to conduct a mathematical analysis of the dynamics of MERS-CoV infection transmission. The dynamics of such a disease with an additional degree of freedom and non-singular behavior are discovered through the use of the aforementioned fractional operator, and this is one of the important components of our prepared paper. Using the concept of fixed point theory, the existence and uniqueness of solutions are demonstrated. The stability analysis is also tested with the help of the Ulam-Hyers approach, respectively. The numerical solution has been conducted by using the fractional Adams-Bashforth scheme. In the numerical simulation, all classes are demonstrated through the graphical presentation regarding the changing values of fractional-order at time t. The results at various fractional-order laying between (0,1] are drawn with the help of Matlab. We also provide a comparison of the proposed approach with that of the Caputo operator. The outcomes that were achieved illustrate that the considered scheme is highly methodical and very efficient compared to the Caputo fractional operator.

2.
Comput Biol Chem ; 98: 107678, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1773207

ABSTRACT

The COVID-19 infection which is still infecting many individuals around the world and at the same time the recovered individuals after the recovery are infecting again. This reinfection of the individuals after the recovery may lead the disease to worse in the population with so many challenges to the health sectors. We study in the present work by formulating a mathematical model for SARS-CoV-2 with reinfection. We first briefly discuss the formulation of the model with the assumptions of reinfection, and then study the related qualitative properties of the model. We show that the reinfection model is stable locally asymptotically when R0<1. For R0≤1, we show that the model is globally asymptotically stable. Further, we consider the available data of coronavirus from Pakistan to estimate the parameters involved in the model. We show that the proposed model shows good fitting to the infected data. We compute the basic reproduction number with the estimated and fitted parameters numerical value is R0≈1.4962. Further, we simulate the model using realistic parameters and present the graphical results. We show that the infection can be minimized if the realistic parameters (that are sensitive to the basic reproduction number) are taken into account. Also, we observe the model prediction for the total infected cases in the future fifth layer of COVID-19 in Pakistan that may begin in the second week of February 2022.


Subject(s)
COVID-19 , Basic Reproduction Number , Humans , Models, Theoretical , Reinfection , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL